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The algebra of the classical Hamiltonian mechanics as the 
closure of two finite-dimensional algebras 

D Kirschbaum 
Central Institute for Nuclear Research Rossendorf, 8051 Dresden, PO Box 10, German 
Democratic Republic 

Received 3 August 1987 

Abstract. It is shown that any generator of the infinite-dimensional canonical transformation 
group in the Hamiltonian formulation of classical mechanics can be obtained as a linear 
combination of repeated commutators of generators of two finite-dimensional subgroups. 
This result has some structural similarity with the Ogievetsky theorem concerning the 
algebra of the general coordinate transformation group in the theory of relativity. 

1. Introduction 

In the structural analysis of physical systems, geometrisation and mappings are concepts 
of basic importance. The structure of observables and the properties of states of the 
considered system are mapped on the elements of some geometrical space and allow 
us to classify physical objects according to their transformation and invariance 
properties or according to the specific time evolution. The study of the interplay 
between geometrical structures and transformation properties for the elements of any 
physical system is a powerful tool for the analysis of existing theories and for the 
development of new ones. 

The problem is that for the familiar physical theories the set of allowed continuous 
transformations is in general an infinite-dimensional one. This concerns, e.g., classical 
mechanics, quantum mechanics and relativistic field theories. It is therefore desirable 
to determine some finite-dimensional subgroups in the set of all admissible transforma- 
tions with simple transformation properties of the physical objects in such a way that 
the result of any continuous transformation of these objects may be derived from the 
transformation behaviour under the subgroups only. Consider, for example, the theory 
of general relativity. Applying any element of the group of continuous transformations 
to the coordinates x, one has 

x, -$ x: =f,(xy) (1.1) 
where f ,  (x,) is some continuous-differentiable function. 

(Ogievetsky 1973) 
The algebra of generators for the transformations (1.1) may be given by the operators 

ix~ox;1x;2xn~ 3 .  a y  (1.2) 
( n, 2 0, p = 0, 1,2,3, a ,  = a/ax,). The Ogievetsky theorem for this algebra of generators 
for the group of general coordinate transformations (1.1) is as follows. Any generator 
(1.1) can be expressed as a linear combination of repeated commutators of generators 
of the special linear group SL(4, R )  and of those of the conformal group C 1 5 .  The 
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infinite-dimensional algebra of generators (1.2) is the closure of these two finite- 
dimensional Lie algebras (Ogievetsky 1973, Konopel’chenko 1975). The use of this 
theorem permits us to define statements for the construction of relativistic invariant 
theories (Borisov and Ogievetsky 1974, Borisov 1978). We consider in  this paper the 
Hamiltonian formulation of classical mechanics based on the 2 n  canonical variables 
( q , ,  p ’ ) ,  i, j = 1 , .  . . , n (i.e. the considered systems have n degrees of freedom). The 
observables of this physical system are all functions f ( q l ,  p ’ )  E C“ and they form the 
(real) Heisenberg algebra dH (Landau and Lifshitz 1970). The diffeomorphism group 
of this physical system, i.e. the canonical transformation group of dH, plays a basic 
role in the qualitative theory of Hamiltonian systems. The group elements characterise 
possible time evolutions, symmetry transformations, invariance conditions and so on 
for these closed physical systems. 

Any one-parameter canonical transformation group of dH may be generated by a 
vector field L f ,  which is determined by an element f~ dH using the Poisson bracket 
operation as follows (Jost 1974): 

(1.3) 

These vector fields L, (1.3) are the elements of the algebra d, of inner derivations of 
the Heisenberg algebra dH. Note that the vector fields (1.3) consist, in the general 
case, of 2 n  terms in contrast to the generators (1.2). 

We prove in this paper that any generator (1.3) of canonical transformations in 
the Heisenberg algebra may be given as a linear combination of repeated commutators 
of generators from two Lie subalgebras of &,--the Lie algebra of the symplectical 
group Sp(2n, R )  and a Lie algebra of some ‘projective canonical group’ of dimension 
n(n + 2 ) .  The algebra s Z L  is the closure of these two Lie algebras. 

This result has in its structure some similarity to the Ogievetsky theorem, but the 
physical systems, the geometrical structures correlated with them and the transforma- 
tion groups are quite different in their physical and mathematical contents. 

Whilst the structure of the Lie algebra of the Sp(2n, R )  is well known from literature 
(Moshinsky et al 1974, Rosensteel and Rowe 1976, 1977), the algebra of the ‘projective 
canonical group’ (we use the notation PCG) seems not have been used so far in the 
phase space. 

The paper is organised as follows. In 0 2 we briefly repeat some basic facts of the 
classical Hamilton approach to fix our notation. In § 3 the Lie algebras of the groups 
Sp(2n, R )  and PCG are characterised as subalgebras in the algebra of vector fields (1.3). 
The properties of the algebra sp(2n, R )  are collected from the literature and written 
in a suitable form for our further consideration. The PCG algebra is derived from the 
projective group in configuration space. We point out in § 5 some common properties 
and differences between this algebra and those of the group SU(n, 1) discussed as 
spectrum generating algebra of the n-dimensional harmonic oscillator (Hwa and Nuyts 
1966, Cocho et a1 1967). In 0 4 we prove our theorem and draw some conclusions in 
0 5. The connection of our formulae with some usual expressions concerning canonical 
transformations is established in a complex basis of the phase space in appendices 1 
and 2. 

If not otherwise mentioned, we denote summation in the formulae by repeated 
indices. Lie groups are denoted by capital symbols, the Lie algebras by the correspond- 
ing small letters. If possible, we omit the arguments from functions defined on phase 
space, i.e. we write f instead of f ( q ,  p ) .  



Classical Hamiltonian mechunics 867 

2. The Hamilton algebra of classical mechanics 

We consider the classical mechanics of a closed physical system of pointlike massive 
particles moving according to Newtonian law. In the standard Hamiltonian formulation 
(Landau and  Lifshitz 1970) the 2n dynamical variables ( 9 ,  p )  = ( q ,  , . . . , q n ,  p ' ,  . . . , p " )  
with the Poisson brackets 

{ q , ,  q , }  = 0 {P', P'} = 0 { q , , p ' }  = -{P', st> = 6 :  (2.1) 

form a generating system for the elements of the Heisenberg algebra dH. Any element 
f = f ( q ,  p )  of this algebra may be generated from the basic observables (2.1) as a result 
of three operations: addition, multiplication with real numbers (we restrict our 
considerations to real observables) and an  associative, commutative product (Grgin 
and  Petersen 1970, 1974). Owing to the measuring process in mechanical systems, the 
observables f (  q, p )  may be represented by number-valued functions defined on the 2n 
real coordinates ( 4 ,  p )  = ( q ,  , . . . , q n ,  p ' .  . . . , p"  1 of the phase space. 

The Poisson bracket operation (2.1) generates a skew-symmetric binary product 
between any two observables defined on the phase space as 

The Poisson bracket operation (2.2) satisfies the requirements for a Lie product 
including the Jacobi identity implying that dH has the algebraic structure of a Lie ring. 

The evolution law of the basic observables (2.1) and for any other observables 
f ' ~  dH is given in the canonical form as 

P A  = { P k ,  H I  4 k  = I % ,  HI f= {.A HI (2.3) 
where H E  idH is the Hamiltonian characterising the special dynamical system. 

Any continuous transformation of the variables (2.1) 

0 = Q ( 4 ,  P, T) P = P ( q ,  PI 7 )  (2.4) 

( T  is a real parameter) is called canonical if it preserves the form of the evolution 
equations (2.3), i.e. the Poisson bracket (2.2). The finite transformations (2.4) may be 
expanded for an  infinitesimal parameter F as (Testa 1970, 1973) 

0 = 4 + 4% k l  P = p + & { p , k } .  ( 2 . 5 ~ )  

For any element g of idH the infinitesimal transformation follows as 

g ( 0 ,  P ) = g ( q , p ) + 4 g ,  k ) = g + F L k ( g ) .  (2.56) 

The function k is called the generating element of the transformation (2.4). The 
evolution law (2.3) is clearly a special case of (2.5). The vector fields Ll constitute 
the elements of the infinite-dimensional algebra dL of inner derivations of the 
Heisenberg algebra dH of observables. 

Owing to the Jacobi identity for the Poisson brackets (2.2) in .dH it follows that 
for the linear map #I : .dH -$ dL, i.e. the relation 

f + L , = { . , f }  h ( g )  = k f l  (2.6) 
there holds {.A g }  + [ Lf, L,]. In fact, the homeomorphism (2.6) between the two algebras 
dH and dL is the algebraical formulation of the duality principle, valid in the Hamilton 
approach of classical mechanics. The algebraical structures on observables and on 
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generators of canonical transformations are realised by homeomorphic operations-as 
Poisson bracket and commutator respectively-on the same vector space structure of 
elements f = f ( q , p ) .  The algebra d, of observables and the algebra dL of inner 
derivations are two realisations of the Hamilton algebra (Grgin and Petersen 1970, 
1974) as the structural basis of an algebraic-geometrical formulation in classical 
mechanics. 

The kernel of the canonical projection (2.6) of dH onto dL consists of the constant 
elements (the numbers) of dH. Using (2.2) and (2.6) we get the analytical form (1.3) 
of the vector field Lf determined by the generating function f: 

We shall in the following take advantage of the duality principle and consider the 
Lie algebras in the basis of generating functions instead of the 2n-component vector 
fields L, (1.3) themselves, i.e. we use the terms 'generating function' and 'generator' 
in a synonymous manner. In this way we get a more transparent form for the equations 
and for the proof of our theorem. A basis set in the algebra dH consists of the 
monomials in (4, p ) .  Any element f ( q ,  p )  may be given as 

(2.7) 
using ( i )  and ( k )  as symbols for the corresponding multi-index sets. 

mations as 

f ( q , p ) = U ; !  'i,qi' . . . q > .  ( p y  . . .  ( p " ) k " = u j ; ' , Q " ' P ' k )  

From (2.6) the corresponding basis follows for the generators of canonical transfor- 

Lk, 'i"(f) = Lg"Jpc"( f )  = { A  41'. . . q > ( p l p .  . . ( p " ) " } .  (2.8) 
Finite canonical transformations (2.4) generated by means of monomials (2.8) have a 
simple explicit expression (Testa 1970, 1973, Dragt and Finn 1976, Heskia and 
Sofronion 1971, Stern 1978). 

The set of all monomials of degree 1 ( I  = E:=, i, + k,) constitute a vector space dh 
of dimension (2n+1-1)!/(2n-1)!1!. 

Note that the monomial basis in (2.7) is, together with (2.2), -2 graded. For 
f;, E d;, f;, E dk it follows that 

{A, ,hJ E d''+'2-2. (2.9) 

3. Two finite-dimensional Lie algebras of canonical transformations 

Consider the functions f( q, p )  which are at most quadratic in the variables. They have 
the form (we omit a constant term) 

(3.1) 
( f l (Y),f$'Y) are real constants). 

f ( q 9  p )  =f!l)ql +fi(')pJ + f ) ( ( k l ) q , q k  + f ) ( i2 'qJpk  +f:k3)p'ppk 

The elements (3.1) form a Lie subalgebra (i t  follows immediately from (2.9)). 
The functions with f l ( Y )  = 0 ( v  = 1,2)  generate the real symplectic group Sp(2n, R )  

The Lie algebra of this non-compact simple group is generated by the monomial 
of dimension n(2n + 1) (Rosensteel and Rowe 1976, 1977). 

basis 

E..  = -4.9. J J  dimension ( ') 
E'' = P'PJ dimension ') 

(3.2a) 

(3.26) 

E {  = qip' dimension n2. ( 3 . 2 ~ )  
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From (2.2) it follows that the generating functions (3.2a) and (3.2b) form two Abelian 
subalgebras separately. The generating functions ( 3 . 2 ~ )  satisfy the commutation rela- 
tions 

(3.3) 

i.e. the algebra is isomorphic to the Lie algebra u ( n )  (see appendix 2 ) .  The set of 
generating functions ( 3 . 2 ~ )  constitutes the maximal compact subalgebra in the algebra 

Note that E : =  q l p '  generates the u(1) subalgebra of u (n ) .  This generator corre- 
sponds in the complex phase space basis (appendix 1) to the Hamiltonian of the 
harmonic oscillator. The remaining set of generators ( 3 . 2 ~ )  forms the (n'- 
1)-dimensional Lie algebra su(n) .  A complete list of commutation relations for the 
Lie algebra (3.2) is given in appendix 2. 

The elements of the symplectic group act as matrix transformations in any vector 
space d91-I c dH (cf (2.9)). The translations t zn  are generated in dI ,  by the 2n variables 
( q , ,  p ' )  themselves. The Lie algebra (3.1) is therefore the semidirect sum sp(2n, R )  %, t z n  

generating the inhomogeneous group of canonical transformations in dH. 
A further finite-dimensional canonical transformation group may be constructed 

starting with the broken linear transformations in the configuration space Q n .  These 
maps may be given as (Giovanni and Gliozzi 1965) 

{ E ! ,  EL} = 6 ; E :  - 6:E;  

sp(2n, RI .  

13.4) 

i.e. they constitute the group of projective transformations in On. 

(see (2.2)). The transformations (3.4) map the algebra do into itself. 

(3.4) may be given as follows: 

The real functions f ( q )  defined on Qn form a commutative subalgebra do in dH 

( n 2  + 2 n )  independent vector fields corresponding to one-parameter subgroups in 

a 
a q, 
- n translation generators (3.5a) 

n generators of special conformal transformations (3.5b) 

n 2  generators. (3.5c) 

The connection (2.5) and  (2.6) of generating monomials and vector fields gives the possi- 
bility of expressing the generators (3.5) by generating monomials. Using ,!,,,A = a / a q k ,  
we obtain the generating monomials for (3.5) as 

P' ( 3 . 6 ~ )  

-4kiqnp') = - q k E :  (3.6b) 

41 P '. ( 3 . 6 ~ )  

The monomials (3.6), together with the Poisson bracket (2.2), form a Lie algebra which 
is isomorphic to the Lie algebra of the vector fields (3.5). 

Using (2 .6)  the monomials (3.6) generate vector fields defined on all elements 
f ( q i P )  Of &H. 
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By writing for the monomials (3.6) the symbols 

4!PJ = AJ Pl = A,+l'  q,E: = A,"+' E: = A,+ ,  
(3.7) 

one obtains the following commutation relation: 

{A: ,  A ,"}=  g,"A,'-g:A," (3.8) 

i , k , l , m = l ,  . . . ,  n + l  n + l  g : = S :  (1, k =  1, .  . . , n )  g n + l =  - 1 .  

The generating monomials (3.6) therefore form a Lie algebra which is isomorphic to 
the algebra of the Lie group SU(n, 1 ) .  Comparing (3.6) and (3.7) in a complex basis 
(z, z*) of the phase space (appendix 2) with the well known realisations of the Lie 
algebra su( n, 1 )  as a spectrum generating algebra of the harmonic oscillator (Hwa and 
Nuyts 1966, Cocho et a1 1967), one finds as the essential difference that the generating 
monomials are of first degree and the A:+' of third degree respectively. The 
corresponding generators are not Hermitian conjugated (appendix 2). 

Starting with the projective group (3.4) in configuration space, we derived a 
finite-dimensional group of canonical transformations defined on the whole algebra 
dH . We therefore call the Lie group generated by the monomials (3.6) the projective 
canonical group (PCG) of the Heisenberg algebra 9pH. 

4. Proof of the theorem concerning the structure of the algebra dL 

We prove the following theorem. Any generator of the algebra dL of canonical 
transformations may be expressed as linear combination of repeated commutators of 
generators of the two subgroups Sp(2n, R )  and PCG. The algebra dL is the closure of 
these two Lie algebras of canonical transformations in 9pH. 

Corollary. Any element f ( q ,  p )  E dH may be generated from the monomials (3.2) and 
(3.7) using the Poisson bracket (2.2). Consider the generating monomials of the Lie 
algebras sp(2n, R )  and PCG, i.e. the monomials (3.2) and (3.7) respectively 

qip', -qiqj ,  p ip'  

qip', p i ,  qiE: 

dimension 2n2+ n 

dimension n 2  + 2n. 
(4.1) 

We prove the theorem by induction to the degree 1 of the generating monomials (2.8). 
The proof proceeds similar to that of the Ogievetsky theorem for generators (1.2) 
(Ogievetsky 1973, Konopel'chenko 1975). Referring to the closure of the two Lie 
algebras (4.1) as g ,  we show that g contains any monomial in q, p of third degree. We 
assume that g contains the monomials of some degree 1 (where 1 is a fixed integer, 
1 > 3). It then follows that g also contains all monomials of degree 1 + 1 .  Consequently 
g contains any monomial (2.8), i.e. g contains the same elements as dL. 

Firstly, g contains the elements { q l q J ,  p ' }  = q J ,  i.e. the inhomogeneous symplectic 
algebra (3.2) together with (4.1). Consider the Poisson brackets 

{ q l q J ,  qkE:} = 2qnqJqk. (4.2) 

Taking all combinations of indices i, j, k we conclude that g contains all monomials 
in the variables q of third degree. 



Classical Hamiltonian mechanics 87 1 

The generating monomials of the algebra contain all Poisson brackets 

{ q k E : , P ' P J )  = ( P f S ; + p ' S : ) E ~ + 2 p ' p J q k  (4.3) 

{ q , q , , P k E : l  = ( q , S ~ + q , 6 : ) E : + 2 q , q , p k  (4.4) 

i.e. the elements p ' E :  and p ' p ' q k  ( 1  c i,j, k n). From the Poisson brackets 

( 1  G i, 1, k )  we conclude that the generating functions q , q , p k  belong to those of g too. 
Using (4.3) we conclude that the generating functions of g contain ( 1  G i ,  j ,  1s n )  

{ 9 k P t P ' ,  P k P 9  = P b ' P I  (4.5) 
i.e. all elements of third degree in p .  Summarising (4.2)-(4.5) we conclude that the 
generating functions of the algebra g contain all elements of third degree in ( 4 ,  p ) .  

Assume then that the generating functions ( 2 . 8 )  of g contain all monomials of 
degree / in the variables (4 ,  p ) ,  i.e. the elements of dL 

(4.6) 0) I ,  ( P )  12 1 ,  + I? = 1 l , = O ,  1 , .  . . , 1 .  

Taking I I  = 0, 1, . . . , 1 there follow ( / +  1 )  different types of monomial (4.6) for each 
degree 1. For the further proof we use ( 2 . 9 ) .  

The generating functions ( 2 . 8 )  contain, together with the elements (2.6) of the type 
(Q) ' ,  also the brackets 

Taking all index combinations in (0)' it follows that the generating functions also 
contain all monomials of the type (Q)" ' .  

Using (4.7) it follows that the monomial 

{sf", (P')*} = 2(1+  O q l p '  (4.8) 

is contained in the generating functions of g. Making use of the repeated Poisson 
brackets { q { p ' ,  q , p k }  it follows that all monomials of the type ( Q ) ' P  are elements in 
the generating functions of g. The algebra g contains all generating functions of the form 

{ ( Q ) $ ' ,  PJP% ( Q ) " ( P ) *  ( 4 . 9 )  
and consequently all monomials of the type (Q) ' - ' (P) '  of degree ( / + l ) .  Applying 
the generating functions p'p' on the monomials of the type (Q) ' l+'(P) 'z  one gets the 
result that all monomials (Q) ' l (P)I2+'  are also contained in g. 

This procedure ends with the conclusion that all monomials of the type ( P ) ' + '  are 
contained in the set of generating functions of g. We conclude that, by proof of 
induction, the algebra g agrees with dL. This proves our theorem. We summarise 
our results and  give some comments. 

5. Conclusions and remarks 

We have shown that any generating function, i.e. any generator (1.3) or (2.8), can be 
expressed as a linear combination of repeated commutators of generators (4.1) of the 
symplectic group Sp(2n, R )  and those of the projective canonical group PCG. The 
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algebra .dL is the closure of the two Lie algebras of these canonical transformation 
groups in the Heisenberg algebra dH. The structural relations between the four algebras 
discussed above may be written in the following form: 

dL = sp(2n, R )  U PCG U (  n) = sp(2n, R )  n PCG. (5.1) 

Additional to the common subalgebra u(n)  there are in both Lie algebras sp(2n, R )  
and PCG two further Abelian subalgebras. The generators of these subalgebras are 
transformed by the U( n) group as vectors or symmetrical tensors of second degree for 
the PCG or the sp(2n, R )  algebra, respectively. 

In proving the theorem we made use of the fact that the generating functions (3.2) 
of the symplectic group act in an  irreducible manner on the elements of vector spaces 
dk (see (2.9)) whilst the generators q,E: (3.66) act as rising operators on the degree 
1, i.e. they map (0)' into (Q) '+ ' ,  and then from the action of sp(2n, R )  follow all Q'lP'2. 

Note that the PCG is a finite-dimensional subgroup in the conformal group, i.e. in 
the set of transformations q, = A (  q ) ,  thef(q)  are analytical functions. The monomials 
q ,p ' ,  q, and p ' E :  ( i , j  = 1, . . . , n) generate a Lie algebra acting on the elementsf( p )  E d, 
in a similar way as the PCG algebra acts on f (  q )  E do. This subalgebra of d L  may be 
used instead of (4.16) without changing the content of the theorem. 

The Poisson brackets between q , E ;  and p ' E ;  contain elements of fourth degree. 
Therefore they are not simultaneously elements of the same finite-dimensional Lie 
algebra. 

Although the PCG algebra is isomorphic to those of the group SU(n, 1) ((A2.2) and 
(A2.3)) there is a remarkable difference between them, namely the realisations of the 
generators (3.60) and (3.66) or Er" and Eft '  respectively. It may therefore be useful 
to consider the PCG in connection with the dynamics of the harmonic oscillator too. 

The structure scheme (5.1) may be compared with the Lie algebras concerning the 
Ogievetsky theorem, namely the algebra of generators for covariance transformations 

so(3, 1) = sl(4, R )  U so(4,2) 

= sl(4, R )  n so(4, 2). 
(5.2) 

The actions of the transformation groups occupying the same places in (5.1) and (5.2) 
have some common features considered in their geometrical structures. The Ogievetsky 
theorem concerns the diffeomorphism group of the space manifold with its pseudo- 
Riemannian geometry, whereas the theorem considered in our paper deals with the 
diffeomorphism group of Hamiltonian structures in classical mechanics, i.e. a symplec- 
tic geometry. The different basical bilinear forms in both geometries give rise to quite 
different geometrical properties in the physical systems and consequently to groups 
which are completely different from each other in both theorems. 
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Appendix 1 

Canonical transformations, their generating functions and the commutation relations 
between generators of subalgebras are often considered in a complex phase space basis 
(Moshinsky er a1 1974, Hwa and Nuyts 1966, Cocho et al 1967). In order to transfer 
our  results into this well known language, we consider the complex basic variables 

( A l . l )  

The transformation ( A l . l )  maps the 2n-dimensional real phase space into the complex 
space C,,. Any real function f ( q ,  p )  is mapped onto a function defined on C,. The 
observables of dH fulfil the reality condition as 

(A1.2) f ( z , z * )  = (f(z, Z * ) ) *  =f*(z*, 2 ) .  

The Poisson bracket operation (2.1) and (2.2) is given as follows: 

(A1.3) 

For any function f(z, z* )  satisfying (A1.2) an infinitesimal canonical transformation 
(2 .5)  can be written as 

(A1.4) 

Using (A1.3), any function f(z, z*) defines a complex vector field 

L j k )  = Is*f). (Al.5) 

The generating monomials (3.2) of the algebra sp(2n, R )  and the corresponding vector 
fields may be given as 

(Al .6)  

For completeness we note the vector fields L,, = -i a / a Z k  and L,, = i a/&:. 
The generating monomials (3.6b) of special conformal transformations give rise to 

vector fields with higher-order coefficient functions. The vector field LZlE;  has the form 

Appendix 2 

Using (A1.3), the Poisson brackets between the generating functions in each of the 
Lie algebras (3.2) and (3.6) may be evaluated directly. The result is for (3.2) (we use 
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(A2.lb) 

{ E ; ,  E ~ ' }  = -i(afE-"+S:EJk).  
For the generating monomials corresponding to (3.6), one has, beside (A2.1a), the 
Poisson brackets 

{ z f ,  z&} = i(SkIE::+ZlZf) 

{zT, E:} = iSIlz,* {zT, E:}  = izT (A2.2) 

{ZkE:, E ! }  = -iSiz,E: { z ~ E : ,  E:} = -izkE:. 
Using the notation (see (3.7) and (3.8)) 

zIzT = A! zf = Ah+l z,E: = AYi1 E :  = A::;  (A2.3) 

equations (A2.2) may be written in a compact form as follows: 
(A2.4) 

with g ; =  S t ,  g::; = -1 (see (3.7) and (3.8)). The generating monomials (3.6) of the 
PCG transformations close to a Lie algebra, which is isomorphic to the algebra of the 
group SU(n, 1). 

Equations (3.7), (3.8) and (A2.3) are not the usual realisation of the Lie algebra 
su( n, l ) ,  known in the context of dynamical algebras for the harmonic oscillator (Hwa 
and Nuyts 1966, Cocho et izl 1967). The generators of translations and of special 
conformal transformations are not represented by Hermitian-conjugated operators. In 
the well known approaches (Hwa and Nuyts 1966, Cocho et a1 1967) the generating 
functions take the form z, (E:)"' and Z ? ( E : ) " ~ ,  respectively. 

{AY, A;"} = i(g:Ar - grA:) 
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